Two New Sesquiterpenes from Celastrus angulatus

Yanhong Wang, ${ }^{\dagger}$ Li Yang, ${ }^{\dagger}$ Yongqiang Tu, ${ }^{\dagger}$ Kun Zhang, ${ }^{\dagger}$ and Yaozu Chen*,t, \ddagger
State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China, and Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China

Received May 24, 1996^{8}
Two new β-dihydroagarofurans, sesquiterpene polyol esters $\mathbf{1}$ and $\mathbf{2}$, were isolated from the leaves of Celastrus angulatus. Their structures were established on the basis of spectral analysis.

The Chinese bittersweet, Celastrus angulatus Max. (Celastraceae), is widely distributed in the People's Republic of China and has been used as a traditional insecticidal plant to protect other plants from insect damage. ${ }^{1}$ In previous studies, an extract of this plant exhibited antifeedant, narcotic, and insecticidal activity against several insect species. ${ }^{2,3}$ Continued study on this plant has resulted in the isolation of two new sesquiterpene polyol esters ($\mathbf{1}$ and $\mathbf{2}$) with a β-dihydroagarofuran skeleton, and their structure elucidation is the subject of this paper.

1. $\mathrm{R}=\mathrm{OBz}$
2. $\mathrm{R}=\mathrm{OH}$

Compound $\mathbf{1}$, col orless needles, analyzed for $\mathrm{C}_{41} \mathrm{H}_{43^{-}}$ NO_{13} by HRMS. Its IR spectrum revealed absorptions for ester groups at $1728 \mathrm{~cm}^{-1}$ and a phenyl group at 1589, 1477, and $1453 \mathrm{~cm}^{-1}$. The EIMS showed the presence of acetate ester substitution at $\mathrm{m} / \mathrm{z} 715[\mathrm{M}+$ $\mathrm{H}-\mathrm{Ac}]^{+}$and 43 [Ac] and benzoate ester substitution at $\mathrm{m} / \mathrm{z} 593\left[\mathrm{M}-\mathrm{Ac}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]^{+}$and $105\left[\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}\right.$ CO]. Moreover, the NMR spectra indi cated the presence of three acetate esters $\left[\delta_{\mathrm{H}} 2.11(3 \mathrm{H}, \mathrm{s})\right.$, and $2.03(6 \mathrm{H}$, s); $\delta_{c} 21.1,21.3(3 \times \mathrm{Me})$, 169.4, 169.6, and $170.7(3 \times$ $\left.-\mathrm{CO}_{2}-\right)$], two benzoate esters [$\delta_{\mathrm{H}} 6.85-7.53$ ($10 \mathrm{H}, \mathrm{m}$); $\delta_{c} 132.7$ and 132.6 (each CH), 129.5, 129.2, 128.0, and 127.7 (each $2 \times \mathrm{CH}$), 129.5 and 128.9 (each quaternary carbon), 165.0 and $164.8\left(2 \times-\mathrm{CO}_{2}-\right)$], and one β-nicotinate ester $\left[\delta_{H} 9.18(1 \mathrm{H}, \mathrm{s}), 8.72(1 \mathrm{H}, \mathrm{dd}), 8.24(1 \mathrm{H}\right.$, dt), and $7.36(1 \mathrm{H}, \mathrm{m})$; $\delta_{c} 153.6,151.0,137.1$, and 123.2 (each CH), 126.1 (quaternary carbon), and $164.8\left(-\mathrm{CO}_{2}-\right.$)]. In addition, the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and DEPT spectra indicated that $\mathbf{1}$ contained a skeleton based on 15 carbons: three methyl carbons ($\delta 16.6,24.6$, and 30.3), two methylene carbons ($\delta 31.3$ and 61.1), seven methine carbons ($\delta 32.9,53.4,69.3,71.6,72.5,74.7$, and 77.4), and three quaternary carbons ($\delta 51.7,81.2$, and 90.3). These data were suggestive of a $1,2,6,8,9,12$-hexasubstituted β-dihydroagarofuran skeleton. ${ }^{4}$
In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and NOESY spectra of $\mathbf{1}$, a doublet signal at $\delta 5.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz})$ was assigned to

[^0]Hax-1 because in this class of compound $\mathrm{H}-1$ generally has axial stereochemistry. ${ }^{5}$ The sole upfield doublet at $\delta 1.17(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz})$ was assigned to $\mathrm{Me}-13$, and this doublet was caused by the methine hydrogen at C-4. The singlet at $\delta 6.83(1 \mathrm{H}, \mathrm{s})$ was assigned to Hax- 6 because of the weak coupling between Hax-6 and Heq-7 occurring in all compounds of this class ${ }^{5}$ and the NOE cross-signal between the axial $\mathrm{Me}-13$ and $\mathrm{H}-6$ that was observed in the NOESY spectrum of $\mathbf{1}$. Moreover, Hax-9 ($\delta 5.81$), Heq-8 ($\delta 5.77$), $\mathrm{Me}-14$ ($\delta 1.62$), Heq-7 ($\delta 2.66$), Me 15 ($\delta 1.46$), $\mathrm{Heq}-2$ ($\delta 5.51$), Heq-4 ($\delta 2.25$), and Ha12 ($\delta 5.54$) were also assigned according to the NOE cross-signals between the Hax-1 peak and those at δ $5.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}-9), \delta 5.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.9$, $6.0 \mathrm{~Hz}, \mathrm{H}-8$), and $\delta 1.62$ (3H, s, Me-14); $\delta 2.66$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=3.9 \mathrm{~Hz}, \mathrm{H}-7$) and $\delta 1.46$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15$); $\delta 5.51$ ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-2$) and $\delta 2.25$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$); and $\mathrm{Me}-13$ and $\delta 5.54$ (1 H , $\mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, \mathrm{Ha}-12)$, respectively. Other signals such as those between Hax-9 and Heq-8, $\mathrm{Me}-13$ and $\mathrm{Heq}-4$, $\mathrm{Me}-14$ and $\mathrm{Me}-15, \mathrm{Hax}-9$ and $\mathrm{Me}-14$, $\mathrm{Heq}-8$ and $\mathrm{Heq}-7$, and Hax-6 and Heq-7 could be found in the NOESY spectrum, which were in good agreement with the stereochemical elucidation and the chemical shift assignments made for $\mathbf{1}$

The locations of the ester functions were determined on the basis of a ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range correlation spectrum, ${ }^{6}$ which indicated that a β-nicotinate ester unit occurred at $\mathrm{C}-8$, two benzoate esters were at $\mathrm{C}-1$ and $\mathrm{C}-9$, and three acetate esters were affixed to C-2, C-6, and $\mathrm{C}-12$. On the basis of the above evidence, compound 1 was elucidated as $1 \beta, 9 \beta$-bis(benzoyloxy)-2 $2 \beta, 6 \alpha, 12$ -triacetoxy- 8β-(β-nicotinoyl oxy)- β-di hydroagarofuran

Compound 2, col orless needles, possessed a mol ecular formula of $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NO}_{12}$ as determined by HRMS. Its characteristic IR absorptions at 3386, 1734, and 1720 cm^{-1} suggested the presence of free hydroxy and ester functions. The NMR spectral data suggested the presence of three acetate esters [δ_{H} 2.07, 1.98, and 1.91 (each $3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}} 21.2(3 \times \mathrm{Me}), 170.5,169.8$, and 169.6 ($3 \times$ $\left.-\mathrm{CO}_{2}-\right)$], a benzoate ester [$\delta_{\mathrm{H}} 7.35-7.80(5 \mathrm{H}, \mathrm{m})$; $\delta \mathrm{c}$ 129.5, 128.3 (each $2 \times \mathrm{CH}$), 133.1 (CH), 129.9 (quaternary carbon), and $165.2\left(-\mathrm{CO}_{2}-\right)$], and a β-ni cotinate ester $\left[\delta_{H} 9.19(1 \mathrm{H}, \mathrm{s}), 8.77(1 \mathrm{H}, \mathrm{dd}), 8.33(1 \mathrm{H}, \mathrm{dt})\right.$, and $7.41(1 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 153.7,151.1,137.1$, and 123.3 (each CH), 125.9 (quaternary carbon), and $164.6\left(-\mathrm{CO}_{2}-\right)$]. On comparison of the NMR data of $\mathbf{2}$ with those of compound $\mathbf{1}$, it was concluded that both compounds possessed a 1,2,6,8,9,12-substituted β-dihydroagarofuran skeleton.

The molecular formula, the presence of a hydroxy group (IR spectrum), and the absence of a benzoate ester
(NMR spectrum) suggested that compound 2 was a debenzoylated analogue of compound 1, which was supported by the following ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral evidence. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, the signals of $\mathbf{2}$ corresponded well to those of $\mathbf{1}$ except for (i) a change in the location and multiplicity of the signal due to $\mathrm{H}-1 ; \mathrm{H}-1$ appeared at $\delta 5.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz})$ in 1 and at $\delta 4.42(1 \mathrm{H}, \mathrm{dd}$, J = 4.1, 13.2 Hz) in 2; and (ii) a new signal due to a hydroxyl proton (OH-1) at $\delta 3.06$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}$) was observed in 2. These findings indicated that compound $\mathbf{2}$ is the C-1 debenzoylated analogue of $\mathbf{1}$. The location and configuration of the esters in 2 were assigned from its ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range correlation and NOE SY spectra. Compound 2 was ther efore elucidated as 1β-hydroxy- $2 \beta, 6 \alpha, 12$-triacetoxy- 8β-(β-nicotinoyloxy)9β-(benzoyloxy)- β-dihydroagarofuran.

Experimental Section

General Experimental Procedures. Melting points were determined on a K ofler apparatus. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$ NMR, DEPT, NOESY, and COLOC spectra were recorded on a Bruker AM-400 NMR spectrometer with TMS as internal standard and CDCl_{3} as solvent. UV spectra in MeOH were obtained on a UV-240 spectrophotometer. IR spectra with KBr plates were determined on a FT-170SX spectrometer. EIMS were obtained on VG ZAB-HS mass spectrometer, operating at 70 eV ionizing energy, with a direct insert system. HPLC was carried out on a Merck RP-8 short column.

Plant Material. The leaves of C. angulatus were obtained from Zunyi City, Guizhou Province, People's Republic of China, in October 1991. Voucher specimens are deposited at the Department of Biology, Lanzhou University.

Extraction and Isolation. The air-dried leaves (2 kg) of C . angulatus were extracted with $\mathrm{Me}_{2} \mathrm{CO}$ at room temperature three times (once a week). Removal of the solvent under reduced pressure afforded a black mixture that was partitioned between $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (10: 1:9). The organic solvent was then chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}(300 \mathrm{~g})$ and eluted with CHCl_{3}, and evaporation of the solution yielded 12 g of a residue. The last residue was chromatographed on a Si gel (150 g) column using petroleum ether $-\mathrm{Me} \mathrm{e}_{2} \mathrm{CO}$ (9:1-6:4) as eluent to give 14 fractions. The fractions of medium polarity were combined and purified on a RP-8 short column using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (8:2) as eluent to afford compounds $\mathbf{1}$ (34 mg) and 2 (30 mg).

Compound 1: col orless needles ($\mathrm{Me}_{2} \mathrm{CO}$); mp 206$208{ }^{\circ} \mathrm{C}$; $[\alpha]_{D}-51.3^{\circ}$ (c 0.54, MeOH); UV (MeOH) λ max $(\log \epsilon) 201$ (3.29), 226 (3.26), 263 (2.53) nm; IR (KBr) v max 1728, 1589, 1477, 1453, 1293, 1225, 1095, 1022 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2}=\right.$ $3.9 \mathrm{~Hz}, \mathrm{H}-1$), 5.51 (1H, m, H-2), 1.84 (1H, m, Hax-3), 2.39 (1H, m, Heq-3), 2.25 (1H, m, H-4), 6.83 (1H, s, H-6), $2.66\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{7,8}=3.9 \mathrm{~Hz}, \mathrm{H}-7\right), 5.77\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{8,7}=3.9\right.$, $\left.\mathrm{J}_{8,9}=6.0 \mathrm{~Hz}, \mathrm{H}-8\right), 5.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9,8=6.0 \mathrm{~Hz}, \mathrm{H}-9), 5.54$, 4.79 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 12a,12b $=13.4 \mathrm{~Hz}, \mathrm{H}-12 \mathrm{a}, \mathrm{H}-12 \mathrm{~b}$), 1.17 (3H, d, J $13,4=7.7 \mathrm{~Hz}, \mathrm{Me}-13$), 1.62 (3H, s, Me-14), 1.46
(3H, s, Me-15), $3 \times$ OAc [2.21 (3H , s,), $2.03(6 \mathrm{H}, \mathrm{s})], 2 \times$ OBz [6.85-7.53 (10H, m)], ONic [9.18 (1H, s), $8.72(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=1.4 \mathrm{~Hz}), 8.24(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.36(1 \mathrm{H}$, $\mathrm{m})] ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 77.4$ (d, C-1), 69.3 (d, C-2), 31.3 (t, C-3), 32.9 (t, C-4), 90.3 ($\mathrm{c}, \mathrm{C}-5$), 74.7 (d, C-6), 53.4 (d, C-7), 72.5 (d, C-8), 71.6 (d, C-9), 51.7 (s, $\mathrm{C}-10$), 81.2 ($\mathrm{s}, \mathrm{C}-11$), 61.1 ($\mathrm{t}, \mathrm{C}-12$), 16.6 ($\mathrm{q}, \mathrm{C}-13$), 24.6 (q, C-14), 30.3 (q, C-15), OAc [21.1, $21.3(3 \times \mathrm{Me}) ; 169.4$, 169.6, $170.7\left(3 \times-\mathrm{CO}_{2}-\right)$], OBz [132.7, 132.6 (each CH), 129.5, 129.2, 128.0, 127.7 (each $2 \times \mathrm{CH}$), 129.5, 128.9 $\left.(2 \times \mathrm{C}), 165.0,164.8\left(2 \times-\mathrm{CO}_{2}-\right)\right]$, ONic [153.6, 151.0, 137.1, 123.2 (each CH), 126.1 (C), $164.8\left(-\mathrm{CO}_{2}-\right)$]; EIMS m/ z 757 ([M] ${ }^{+}, 41$), 715 (49), 653 (27), 593 (11), 520 (10), 305 (14), 228 (26), 105 (100); HREIMS m/ z 757.2429 [M] ${ }^{+}$(calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{NO}_{13}, 757.2392$).

Compound 2: colorless needles ($\mathrm{Me} \mathrm{e}_{2} \mathrm{CO}$); mp 200$202{ }^{\circ} \mathrm{C}$; $[\alpha]_{D}-43.1^{\circ}$ (c 0.51, MeOH); UV (MeOH) λ max $(\log \epsilon) 201$ (3.16), 219 (3.14), 263 (2.49) nm; IR (KBr) v max 3386, 1734, 1589, 1421, 1227, 1103, $1041 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $\left.)_{3}\right) \delta 4.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1,2=4.1 \mathrm{~Hz}$, $\left.\mathrm{J}_{1,1-\mathrm{OH}}=13.2 \mathrm{~Hz}, \mathrm{H}-1\right), 5.18(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.88(1 \mathrm{H}, \mathrm{m}$, Hax-3), 2.20 (1H, m, Heq-3), 2.31 (overlap), 6.23 (1H, s, $\mathrm{H}-6), 2.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7,8=4.4 \mathrm{~Hz}, \mathrm{H}-7), 5.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8,7$ $\left.=4.4, \mathrm{~J}_{8,9}=5.6 \mathrm{~Hz}, \mathrm{H}-8\right), 5.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9,8=5.6 \mathrm{~Hz}$, H-9), 5.21, 4.90 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}{ }_{12 \mathrm{a},} 1_{2 b}=12.0 \mathrm{~Hz}, \mathrm{H}-12 \mathrm{a}$, H-12b), 1.21 (3H, d, J $13,4=9.3$ z, Me-13), $1.60(3 \mathrm{H}, \mathrm{s}$, Me-14), 1.43 (3H, s, Me-15), $3 \times$ OAc [2.07, 1.98, 1.91 (3H each s)], OBz [7.35-7.80 (5H, m)], ONic [9.19 (1H, s), $8.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.5 \mathrm{~Hz}), 8.33(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.0 \mathrm{~Hz})$, $7.41(1 \mathrm{H}, \mathrm{m})$], OH (3.06, d, J он,1 $=13.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$) $\delta 77.0$ (d, C-1), 72.2 (d, C-2), 31.2 (t, C-3), 33.2 (t, C-4), 89.9 ($\mathrm{s}, \mathrm{C}-5$), 74.7 (d, C-6), 53.3 (d, C-7), 73.7 (d, C-8), 73.5 (d, C-9), 51.0 ($s, C-10$), 81.3 (s, C-11), 63.7 (t, C-12), 17.8 (q, C-13), 24.4 (q, C-14), 30.3 (q, C-15), OAc [21.2 (3 $\times \mathrm{Me}$), 170.5, 169.8, 169.6 (3 \times $\left.-\mathrm{CO}_{2}-\right)$], OBz [129.5, 128.3 (each $2 \times \mathrm{CH}$), $133.1(\mathrm{CH})$, $129.9(\mathrm{C}), 165.2\left(-\mathrm{CO}_{2}-\right)$], ONic [153.7, 151.1, 137.1, 123.3 (each CH), 125.9 (C), $164.6\left(-\mathrm{CO}_{2}-\right)$]; EIMS m/ z 653 ([M]], 43), 593 (17), 547 (11), 520 (16), 305 (22), 228 (38), 105 (100); HREIMS m/ z 653.2167 [M] ${ }^{+}$(calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NO}_{12}, 653.2130$).

Acknowledgment. The authors are grateful for financial support from the National Natural Science Foundation and the Education Committee Doctoral Foundation of the People's Republic of China.

References and Notes

(1) J acobson, M. Insecticides from Plants, A Review of the Literature, 1941-1953; Agricultural Handbook, No. 154, USDA; Government Printing Office: Washington, DC, 1958; p 44.
(2) Tu, Y. Q.; Song, Q. B.; Wu, X. L.; Huang, G. S.; Ma, Y. X.; Chen, Y. Z. Acta Chim. Sin. 1993, 51, 404-408.
(3) Wu, W. J.; Tu, Y. Q.; Liu, H. X.; Zhu, J. B. J . Nat. Prod. 1992, 55, 1294-1298.
(4) Tu, Y. Q. J. Chem. Soc., Perkin Trans. 1 1991, 425-427.
(5) Sang, H.; Wang, H. Q.; Tu, Y. Q.; Chen, Y. Z. Phytochemistry 1991, 30, 1547-1549.
(6) Bruning, R.; Wagner, H. Phytochemistry 1978, 17, 1821-1858.
(7) Sang, H.; Wang, H. Q.; Tu, Y. Q.; Chen, Y. Z. Magn. Reson. Chem. 1991, 29, 650-655.

NP960486Q

[^0]: ${ }^{\dagger}$ Lanzhou University.
 \# Zhejiang University.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, J anuary 1, 1997.

